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Abstract. An axiomatization of a generalized Shapley value of games
is proposed. The authors follow Faigle and Kern, in the sense that our
basic material is the maximal chains of the underlying set system. This
generalized Shapley value may have applicability to the game on set
systems which satisfy the condition of a sort of normality.

1 Introduction

Let X = {1,2,...,n} be a set consisted of n players. Then a subset of X is called
a coalition. A function which shows the profit by any coalition v : 2%X — R is
called a cooperative game. The solution of the game is a function from the
whole set of the game to n dimension real vector which measures each player’s
contribution or share-out. The Shapley value and the Banzhaf value are known as
the solution, and they are characterized by natural axiomatizations [3][4]. In this
paper we shall show the axiomatization of the generalized Shapley value. Faigle
and Kern have generalized the Shapley value using the concept of the maximal
chain [5], it can be applied to the multi-choice game. Algaba et al. have also
generalized it using the concept of the interior which can be applied to the game
defined on antimatroid set systems, and they have given its axiomatizations [1].
Using these generalized Shapley value, we can obtain solutions of the bi-capacity
and the multi-choice game and so on. We shall make Faigle and Kern’s Shapley
value more general and also show its axiomatization.

2 Set System and Shapley Value of a Game on It

We begin by introducing some notations and definitions. Throughout this paper,
we consider a finite universal set X = {1,2,...,n}, n > 1, and 2% denotes the
power set of X. Let us consider & a subset of 2% which contains # and X. Then
we call (X, &) (or simply & if no confusion occurs) a set system. A set system
endowed with inclusion is a particular case of a partially ordered set (G, C), i.c.,
a set & endowed with a partial order (reflexive, antisymmetric and transitive)
as C.
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Let A, B € G. We say that A is covered by B, and write A < Bor B > A, if
AGC Band AC C ¢ B together with C € & imply C = A.

Definition 1 (maximal chain of set system). Let & be a set system. We
coll € a maximal chain of & if € = (Cy,Ch,...,Cn) satisfies 0 = Cy < Cy <
< Cm=X,Ci€6,i=0,...,m.

The length of the maximal chain € = (Cy, C4,...,Cy,) is m. We denote the set
of all m-length maximal chains of & by I,(G), 1 <m < n.

Example 1. Let X := {1,2,3},6, := ({0, {1},{1,2},{1,3},{2,3}, X}. Then the
maximal chains of &; are € := {0,{1},{1,2}, X}, % = {0,{1},{1,3}, X},
@, = {0, (2,3}, X}, [3(6) = {%} and I3(6) = (%, %} (Fig. 1).

Remark 1. (X,2%) has n! maximal chains and all of their length are n.

Definition 2 (totally ordered set system). We say that (X, ) is a totally
ordered set system if for any A, B € G, either AC B or AD B.

If (X,8) is a totally ordered set system, then it has only one maximal chain
which length is n.

Definition 3 (normal set system). We say that (X, &) is ¢ normal set sys-
tem if for any A € G there ezists € € 1,(6) salisfying A€ €.

Ezample 2. ({1,2,3},{0,{1},{1,2},{1,3},{2,3},{1,2,3}}) is not a normal set
system, because there are not any 3-length maximal chains which includes {2, 3}

(Fig. 1).

Remark 2. Normality does not mean that all length of maximal chains are n. In
fact, ({1,2,3,4},{0,{1},{3},{1,2},{3,4},{1,2,3},{2,3,4},{1,2,3,4}}), which
has 3-length maximal chain (@, {3}, {1, 2,3}, {1, 2,3,4}), is a normal set system
(Fig. 2).

Definition 4 (game on a set system). Let (X, G) be a set system. A function
v:8 — IR is a game on (X, S) if it satisfies v(B) = 0.

Definition 5 (Shapley value of game on (X,2%)[3]). Let v be a game on
(X,2%). The Shapley value of v, ®(v) = (¢'(v),...,¢"(v)) € [0,1]" is defined
by
$' (W)= D AMyeAUE) —v(A), i=1,...,n,
ACX\{i}
where
(n—k—-1)! k!

n!

T

Ve =

Remark that 37, ¢*(v) = v(X) holds. The Shapley value can be represented
by using the maximal chains as follows.
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Fig. 1. set systems

Proposition 1. Fiz arbitrarily i € X. For any € € I',(2%), there exzists a
unique Ag € € such that i ¢ Ag and A¢ U {i} € ¥, and

Fo)=— Y (w(AeU{i}) - v(4e))

C el (2X)
holds.

The fact is well known in the game theory. We give a proof of Proposition 1 for
the sake of completeness.

Proof. |[,(2%)| = n! holds. First, we show that for any ¥ € I},(2%), there is
an Ag¢ € € such that i ¢ A and Ag U {i} € €. Fix € = (Cy,C1,...,Cn) €
I,(2%). We have for k = 1,...,m, |Ck \ Ck—1] = 1 so that m = n holds. We
have Cx \ Cr—1 # C; \ Cj—1 for k < j because if Cy \ Cx—1 = C; \ Cj—; then
C; 2 Ci \ Ck—1. But since k < j, Cj—1 2 Cy therefore C;—1 2 Ci \ Ck—1 which
is a contradiction. Hence for any i € X, there is an Ay € ¥, which satisfies
i¢ Ag and Ag U {i} € F.

Next we show that for A C X\ {i}, the number of chains which include AU{¢}
and A is (n— |A] — 1)|A]!. Fix arbitrarily ¢ € X. Number of chains from AU {1}
to X is (n —|A| — 1)! and chains from @ to A is |A|!. Hence the number of chains
which include 4 U {i} and A is |A]! - (n — |A] — 1)!. Therefore

LY e(Ae Ui - v(de))
el (2X)

_(n— Al - 1)l |A]

n!

Y WAU{}) —v(4),

AeX\{i}

which completes the proof.



188 A. Honda and Y. Okazaki

Faigle and Kern had generalized the Shapley value for applying the multi-choice
game using the concept of the maximal chain. We extend their Shapley value
for applying to more general cases.

Definition 6 (Shapley value of game on set system). Let v be a game on
a normal set system (X, &). The Shapley value of v, B(v) = (¢*(v),...,d"(v)) €
IR™ is defined by

1

(FK) ¢1FK(U) = IFH(G)I

Y. WA U{i}) - v(4e)),

CE(6)

where Ag := A€ € € I,(6) such thati ¢ A and AU{i} € €.

We discuss the domains of @. Let (X, &) be a normal set system and let v
be a game on (X,6). Then we call (X,6,v) a game space. Let Y, be the
set of all normal set systems of X := {1,2,...,n} and let Ag be the set of
all game spaces defined on a normal set system (X,S). The domain of & is
A= Uil Uses, Qs, and @ is a function defined on A to IR™. We denote

n=
simply ®(v) and ¢'(v) instead of #(X,S,v) and ¢*(v) as far as no confusion
occurs.
We introduce further concepts about games, which will be useful for stating

axioms.

Definition 7 (dual game). Let v be a game on (X,S). Then the dual game
of v is defined on G2 := {A € 2X | A° € &} by v¥H(A) := 1 — v(A°) for any
A € &9, where A°:= X \ A.

Definition 8 (permutation of v). Let v be a game on (X,8) and 7 be a
permutation on X. Then the permutation of v by m is defined on n(6) =
{m(4) € 2X | A€ G} by mov(A) :=v(n"1(A)).

Let us consider a chain of length 2 as a set system, denoted by 2 (e.g., {@, {1},
{1,2}}), and a game v2 on it. We denote by the triplet (0, u,t) the values of v?
along the chain. We suppose 2 := {0, {1}, {1,2}} unless otherwise noted.

Definition 9 (embedding of v2). Let v be a game on a totally ordered normal
set system (X, ), where & := {Cy,...,Cp} such that C;—1 < C;, i =1,...,n,
and let v% ;= (0,u,t),t # 0, be a game on 2. Then for C, € &, v°* is called
the embedding of v2 into v at Ci and defined on the totally ordered normal set
system (X%, &%) by

w(C,), if A=Cj,j <k,
6O (4) = { v(Chot) + % - (v(Ci) = v(C-1)), if A=Cp, (1)
’U(Cj_l), if A’—‘C;,] >k,

where {ix} 1= Ck \ Cr—1,%% # 1%, (X \ {ix}) N {ik, i)} = 0, X = (X \ {ixr}) U
{13k 1 Cp = (Cr \ {5k }) U {33}, Cf = (Cji—1 \ {ix}) U {3}, ik} for j > k, and
Gck = {CO, i .,C’k_l,C,’c,C,’C“, PN ’Crll—}—l}'
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Remark that more properly, the dual game of v is the dual game space of the
game space (X, &, v) which is defined by (X, &,v)? := (X, 6%, v%) with &¢ :=
{A® € 2X | A € &}, the permutation of v is the permutation of the game space
(X, 6, v) which is defined by (X, &, v)™ := (X, n(&), mov), and the embedding of
(0,u,t),t # 0, into v is the embedding of the game space ({1, 2},2,(0,u,t)) into
the game space (X, 6,v), and it is defined by (X, &,v)%* := (X, GOk, 4Ck),

3 Axiomatization of the Shapley Value of Games

We introduce six axioms for the Shapley value of games on normal set systems.

Axiom 1 (continuity of v?). The function $'(0,u,t) is continuous with re-
spect to u.

Axiom 2 (efficiency of v?). For any game v? = (0,u,t) on 2, ¢'(0,u,t) +
&%(0,u,t) =t = v(X) holds.

Axiom 3 (dual invariance of v?). For any game vZ=(0, u,t) on 2, (0, u,t)=
&(0,u,t)? holds.

Axiom 4 (embedding efficiency). Let (X,8) be a totally ordered normal
set system and let G := {Cy,...,Cr},Ciz1 < Ciyi = 1,...,n. Then for any
v on (X,8), any (0,u,t),t # 0, and any Cx € &, ¢*(vCr) = ¢i(v) for any
i # i iy, 6% (0C%) = ¢%(v) - $1(0,u,t)/t and ¢ (vOr) = $i*(v) - $2(0, u, ) /¢
hold, where {ix} := Ci \ Ck-1.

Axiom 5 (convexity). Let (X,6), (X,81) and (X,S3) be normal set sys-
tems satisfying I7,(61) UL (63) = I'h(6) and [,(61) NI, (G2) = 0 and v be
a game on &. Then there exists a €]0, 1[ satisfying that for every game v on &
and for every i € X, ¢*(v) = a¢*(vle,) + (1 — @)¢'(v]s,)-

Axiom 6 (permutation invariance). Let (X, &) be a normal set system and
v be a game on (X, &). Then for any permutation m on X satisfying 7(6) = G,
P (v) = ¢"(mow),i=1,...,n holds.
Then we obtain the following theorem.

Theorem 1. Let v be a game on a normal set system (X, S). Then there exists
a unique function satisfying Axioms 1, 2, 3, 4, 5 and 6, and it is given by (FK).

Now, we discuss in detail the above axioms.

3.1 Efficiency of v2
More generally, for any game on a normal set system, Axiom 2 holds.

Proposition 2. Let (X, &) be a normal set system. Then for any game on
(X,6), Yoi, dhx(v) = v(X) holds.
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3.2 Dual Invariance
More generally, for any game on a normal set system, &(v) is dual invariant.

Proposition 3. Let (X, &) be a normal set system. Then for any v on (X,6),
¢FK (’Ud) = ¢FK (’U)

3.3 Embedding Efficiency

Let v be a game on a totally ordered normal set system & := {Co,...,Cy} such
that Ci—1 < Cy, i = 1,...,n, Then the embedding at C}, into v by (0, u, t) means
that 4y := Ci\Cg-1 is splitted to {4}, i} }. Axiom 4 implies ¢ (vC*)+ i (vCr) =
¢* (v) and ¢*(vC*) = ¢*(v) for i # i',i”, so that Axiom 4 is natural property in
the meaning of the contributions of ¢}, and /.

4 Application to Game on Lattice

The lattice (L, <) is a partially ordered set such that for any pair x,y € L,
there exist a least upper bound z V y (supremum) and a greatest lower bound
Ay (infimum) in L. Consequently, for finite lattices, there always exist a greatest
element (supremum of all elements) and a least element (infimum of all elements),
denoted by T, L (see [2]). Our approach may have applicability to games defined
on lattices which satisfy a kind of normality by the translation from lattices to
set systems (cf. [6]).

Definition 10 (game on lattice). Let (L, <) be a finite lattice with least ele-
ment denoted by L. A game on L is a function v : L — IR satisfying v(L) = 0.

Evidently the set system is not necessarily a lattice. Moreover, the normal set
system is not necessarily a lattice. Indeed, take X := {1,2,3,4} and & :=
{8,{1}, {4}, {1,2}, {1.3}, {2,4}, (3,4}, {1,2,4}, {1,3,4}, X}. Then, (X, &) is a
normal set system, but it is not a lattice, because there is not the supremum of
{1} and {4} (Fig. 2).

Definition 11 (join-irreducible element). An element = € (L, <) is join-
irreducible if for all a,b € L, x # L and x = a V b implies z = a or ¢ = b.

We denote the set of all join-irreducible elements of L by J(L).
The mapping n for any a € L, defined by

na):={zeJ(L) |z <a}

is a lattice-isomorphism of L onto (L) := {n(a) | @ € L}, that is, (L, <) =
(n(L), €). (Fig. 3)

Translating lattices which is underlying space of a game v to set systems,
we obtain a set of players as J(L) and a set system as (L) and we can apply
Definition 6 to a game on them if that is the case where the set system is normal.
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Fig. 3. Translation of lattice

In this paper we treat games defined on normal set systems. If the underlying
space is not normal, Definition 6 can not be applied to such games and this
fact is natural. Because ¢*(v) means a sort of the contribution of player ¢ and
is calculated as an average of i’s contributions v(A U {i}) — v(A). For instance,
let X := {1,2,3} and &y := {0,{1},{1,2,3}} which is not normal, and let v
be a game on (X, ;). Then we cannot know contributions of each single {2}
nor {3}. If we regard {@,{1},{1,2,3}} as the lattice, not the set system, the
situation is a little different. In this case, the name of elements are just the
label. We have J(61) = {{1},{1,2,3}} and |J(S1)| = 2, so that considering
G as a set system (J(S;),61), we can apply Definition 6 to the game on &,
and we obtain ¢{1}(v) and ¢1123} (v).
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