Subjective Evaluation Process by
Multi-Dimensional Fuzzy Measure

Aoi Honda, Junji Yamagami and Yoshiaki Okazaki
Kyushu Institute of Technology

Department of Systems Innovation and Informatics,
Faculty of Computer Science and Systems Engineering
Kyushu Institute of Technology, Fukuoka, Japan
email: aoi@ces.kyutech.ac.jp

I. INTRODUCTION

The measure of subjective evaluation is formulated as a fuzzy measure on the set of items \(X = \{ x_1, x_2, \ldots, x_k \} \).
A fuzzy measure is a set function \(\mu : 2^X \to [0, 1] \) satisfying

\[
\mu(\emptyset) = 0, \mu(X) = 1, \quad \text{if } A \subset B, A, B, \in 2^X, \text{ then } \mu(A) \leq \mu(B)
\]

(monotonicity).

If an object has a score function \(f(x) : X \to [0, 1] \), then its evaluated value is given by the Choquet integral

\[
\int_X f \mu \left([1/2, 3][4] \right) = \int_X f \mu \left(\frac{1}{2} + \frac{x}{3} \right) [4].
\]

In this paper, we consider the \(n \)-fuzzy measures \(\mu_1, \mu_2, \ldots, \mu_n \) and the decision operation \(\varphi : [0, 1]^n \to [0, 1] \). And in our evaluation process, the final evaluation is examined by the value

\[
\varphi \left(\left(C \right) \int_X f \mu_1, \left(C \right) \int_X f \mu_2, \ldots, \left(C \right) \int_X f \mu_n \right) \].

In the sequel, we shall only consider the case \(n = 2 \) for simplicity.

II. 2-DIMENSIONAL MEASURE AND INTEGRAL

Definition 1 2-dimensional measure \(\mu \) is the set function \(\mu : 2^X \to [0, 1] \times [0, 1] \) satisfying

\[
\mu(\emptyset) = (0, 0) \quad \text{and } \mu_X = (1, 1).
\]

Remark that the monotonicity is not assumed on \(\mu \).

Definition 2 The decision operation \(\varphi \) is a function \(\varphi : [0, 1] \times [0, 1] \to [0, 1] \) satisfying

\[
\varphi(0, 0) = 0.
\]

The score function \(f \) (of an object) is a function \(f(x) : X \to [0, 1] \). The value \(f(x_i) \) is the score (of an object) for the item \(x_i \). The integral \(I_\mu(f) = \int_X f d\mu \) is defined by the manner same to the Choquet integral as follows.

Suppose that \(f(x_1) \geq f(x_2) \geq \cdots \geq f(x_n) \geq 0 \) without loss of generality. We set \(f(x_{n+1}) = 0 \). Then \(f(x) \) is represented as

\[
f(x) = \sum_{i=1}^n (f(x_i) - f(x_{i+1})) 1_{\{x_1, x_2, \ldots, x_i\}}(x).
\]

Then the integral \(I_\mu(f) = \int_X f d\mu \) is defined by

\[
I_\mu(f) = \int_X f d\mu = \sum_{i=1}^n (f(x_i) - f(x_{i+1})) \mu_\varphi(\{x_1, x_2, \ldots, x_i\}).
\]

If we denote by \(\mu(A) = (\mu_1(A), \mu_2(A)) \), \(\mu_i : 2^X \to [0, 1] \), then

\[
I_\mu(f) = (I_{\mu_1}(f), I_{\mu_2}(f)),
\]

where

\[
I_{\mu_i}(f) = \int_X f d\mu_i = \sum_{i=1}^n (f(x_i) - f(x_{i+1})) \mu_j(\{x_1, x_2, \ldots, x_i\}),
\]

\(i = 1, 2 \).
Remark that $I_{\mu}(f) \in [0, 1]$ and $I_{\mu}(f) \in [0, 1] \times [0, 1]$. The final evaluated value (of an object) is given by $\varphi(I_{\mu}(f))$.

III. Decision operation

The decision operation $\varphi(x, y) : [0, 1] \times [0, 1] \rightarrow [0, 1]$ must be determined depending on the evaluated values $x = \int X fdy_1$ and $y = \int X fdy_2$ and also on some interactions between x and y. We introduce the following interaction terms:

1. $s : |x - y| \ (s \in \mathbb{R})$
2. $t \sqrt{|x-y|} \ (t \geq 0)$

and we suppose that $\varphi(x, y)$ is of the form

$$\varphi(x, y) = c_1 x + c_2 y + s \cdot |x - y| + t \sqrt{|x-y|},$$

where $c_1, c_2 \geq 0$, $s \in \mathbb{R}$ and $t \geq 0$. Furthermore, to assure $\varphi(x, y) \geq 0$, we assume $c_1 \wedge c_2 \geq |s|$, and $c_1 + c_2 + t = 1$ for $\varphi(1, 1) = 1$.

Remark 3 The term $s : |x - y|$ means that, for $s < 0$, an object with $\int fdy_1 \approx \int fdy_2$ has a priority. The term $\sqrt{|x-y|}$ means that an object such that both $\int fdy_1$ and $\int fdy_2$ are different from 0 has a priority.

Proposition 4 $\varphi(x, y)$ is monotone in the following sense:

$$x_1 \leq x_2, y_1 \leq y_2 \Rightarrow \varphi(x_1, y_1) \leq \varphi(x_2, y_2).$$

Proof It is sufficient to prove the case $t = 0$. We have

$$\varphi(x_2, y_2) - \varphi(x_1, y_1)$$

$$= c_1(x_2 - x_1) + c_2(y_2 - y_1) + s \left(|x_2 - y_2| - |x_1 - y_1| \right)$$

$$\geq c_1(x_2 - x_1) + c_2(y_2 - y_1) - |s| \left(|x_2 - x_1| - |y_2 - y_1| \right)$$

$$\geq c_1(x_2 - x_1) + c_2(y_2 - y_1) - |s| (x_2 - x_1) - |s| (y_2 - y_1)$$

$$\geq 0,$$

since $c_1 \wedge c_2 \geq |s|$.

Example 5 (1) $\varphi(x, y) = x \vee y = \frac{x + y + |x - y|}{2}$

(2) $\varphi(x, y) = x \wedge y = \frac{x + y - |x - y|}{2}$

(3) $\varphi(x, y) = \frac{x + y}{2}$ (arithmetic mean)

(4) $\varphi(x, y) = \frac{\sqrt{x^2 + y^2}}{2}$ (geometric mean)

Proposition 6 If μ_1 and μ_2 are fuzzy measures, then $\varphi(\mu(A)) = \varphi(\mu_1(A), \mu_2(A))$ is also a fuzzy measure.

IV. Decision operation and order relation

Definition 7 A binary relation \leq on $[0, 1] \times [0, 1]$ is called a comparable quasi-order if

(i) (comparability): for every $u, v \in [0, 1] \times [0, 1]$, either $u \leq v$ or $v \leq u$ holds,

(ii) (reflexivity): for every $u \in [0, 1] \times [0, 1]$, $u \leq u$ holds, and

(iii) (transitivity): $u \leq v, v \leq w$ implies $u \leq w$.

Remark that we do not suppose the antisymmetric law:

$$u \leq v \text{ and } v \leq u \text{ implies } u = v.$$

If we set $u \sim v \Leftrightarrow u \leq v$ and $v \leq u$, then \sim is the equivalence relation and the quotient $[0, 1] \times [0, 1]/\sim$ becomes a totally ordered set naturally.

Using the decision operation $\varphi : [0, 1] \times [0, 1] \rightarrow [0, 1]$, we can define the order \leq_φ in $[0, 1] \times [0, 1]$ by

$$u \leq v \Leftrightarrow \varphi(u) \leq \varphi(v) \text{ for } u, v \in [0, 1] \times [0, 1].$$

Then $\varphi : ([0, 1] \times [0, 1], \leq_\varphi) \rightarrow [0, 1]$ is monotone.

Proposition 8 The comparable quasi-order \leq_φ is coarser than the usual order, that is,

$$u_1 \leq v_1, u_2 \leq v_2 \Rightarrow u \leq_\varphi v$$

for $u = (u_1, u_2), v = (v_1, v_2)$.

Proof The assertion follows from Proposition 4.

We say an comparable quasi-order \leq on $[0, 1] \times [0, 1]$ is φ-adequate if \leq_φ is coarser than \leq.

Definition 9 Let $\varphi : [0, 1] \times [0, 1] \rightarrow [0, 1]$ be a decision operation and $\mu : 2^X \rightarrow [0, 1] \times [0, 1]$ be a set function. We say μ is φ-adequate if

$$A \subset B, A, B \in 2^X \Rightarrow \mu(A) \leq_\varphi \mu(B).$$

Proposition 10 μ is φ-adequate if and only if $\varphi(\mu(A)) : 2^X \rightarrow [0, 1]$ is a fuzzy measure.

Definition 11 Let \leq be any comparable quasi-order in $[0, 1] \times [0, 1]$ such that $(0, 0) \leq (1, 1)$. Then a set function $\mu : 2^X \rightarrow [0, 1] \times [0, 1]$ is called a 2-dimensional fuzzy measure on X with values in $([0, 1] \times [0, 1], \leq)$ if the following conditions are satisfied:

$$\mu(\emptyset) = (0, 0), \mu(X) = (1, 1),$$

$$A \subset B, A, B \in 2^X \Rightarrow \mu(A) \leq \mu(B).$$

Proposition 12 (1) Let \leq be a φ-adequate comparable quasi-order in $[0, 1] \times [0, 1]$ and let $\mu : 2^X \rightarrow ([0, 1] \times [0, 1], \leq)$ be a 2-dimensional fuzzy measure. If \leq is φ-adequate, then $\varphi(\mu(A)) : 2^X \rightarrow [0, 1]$ is a fuzzy measure, that is, μ is φ-adequate.

(2) Assume that $|X| \geq 3$. Assume also that for every 2-dimensional fuzzy measure $\mu : 2^X \rightarrow ([0, 1] \times [0, 1], \leq)$, μ is φ-adequate. Then \leq is φ-adequate.
Proof

(1) is clear.

(2) For every \(u, v \in [0, 1] \times [0, 1] \) with \(u \leq v \), we can find a fuzzy measure \(\mu \) such that \(\mu(x_1) = u \), \(\mu(x_1, x_2) = v \). So it follows that \(\phi(\mu(x_1)) \leq \phi(\mu(x_1, x_2)) \), that is, \(u \leq \phi(v) \).

If \(\phi(\mu(A)) \) is a fuzzy measure, we say \(\phi(\mu(A)) \) the amalgamated measure, or the distortion of \(\mu(A) \) by \(\phi(\mu) \).

Proposition 13 Let \(\mu : 2^X \rightarrow ([0, 1] \times [0, 1] \leq) \) be a 2-dimensional fuzzy measure. Then there exists a decision operation \(\phi \) such that \(\mu \) is \(\phi \)-adequate.

Proof Let \(\mathcal{A} = \{\mu(A)|A \in 2^X\} = \{w_0 = 0 \leq w_1 \leq w_2 \leq \cdots \leq w_{2^n} = (1, 1)\} \). Then we can classify \(\mathcal{A} \) as follows:

- \(\mathcal{A} = \mathcal{A}_0 \cup \mathcal{A}_1 \cup \cdots \cup \mathcal{A}_L \) (disjoint sum),
- \(\mathcal{A}_k = \{w_0^k, w_1^k, \ldots, w_{2^n}^k\} \), \(w_0^k = 0, w_{2^n}^k = (1, 1) \),
- for every \(w_i^k, w_j^k \in \mathcal{A}_k \), \(w_i^k \sim w_j^k \), and
- for every \(k \leq \ell \) and for every \(u \in A_k, v \in A_{\ell} \), \(u \leq v \) holds.

We define \(\phi \) by

\[
\phi(u) = 0 \text{ if } u \in A_0 \cap A^c, \text{ and } \\
\phi(u) = \frac{k}{L} \text{ if } u \in A_k, k = 1, 2, \ldots, L.
\]

Then for \(A \subset B, A, B \subset 2^X \), we have \(\mu(A) \leq \mu(B) \). If \(\mu(A) \) and \(\mu(B) \) belongs to same class \(\mathcal{A}_k \), \(\phi(\mu(A)) = \phi(\mu(B)) \). If \(\mu(A) \leq \mu(B) \) and \(\mu(A) \sim \mu(B) \) (not equivalent), then \(\mu(A) \in A_k, \mu(B) \in A_{\ell} \) for \(k < \ell \), so that \(\phi(\mu(A)) \leq \phi(\mu(B)) \). This shows \(\mu \) is \(\phi \)-adequate.

Proposition 14 \(\phi : ([0, 1] \times [0, 1], \leq) \rightarrow \mathbb{R} \) is monotone if and only if there exists a strictly monotone function \(h : [0, 1] \times [0, 1] \rightarrow \mathbb{R} \) such that \(\phi(u) = h(\pi(u)) \), where \(\pi : [0, 1] \times [0, 1] \rightarrow [0, 1] \times [0, 1] \leq \) is the quotient mapping.

Example 15 Consider the comparable quasi-order \(\leq \) given by

\[
u \leq v \Leftrightarrow u_1 + u_2 \leq v_1 + v_2.
\]

Then \(\phi \) is monotone if and only if there exists a strictly increasing function \(h : [0, 1] \rightarrow [0, 1] \) such that

\[
\phi(s, t) = h\left(\frac{s + t}{2}\right).
\]

V. Examples

A. Evaluation by geometric mean

The evaluation process, by the geometric mean \(\sqrt[n]{r_1 r_2 \cdots r_n} \) of the score \(r_i \) for the item \(x_i \), is in our formulation as follows. Put \(\mu(A) = (\delta_{x_1}(A), \ldots, \delta_{x_n}(A)) : 2^X \rightarrow [0, 1]^n \), where \(\delta_{x_i} \) is the point mass at \(x_i \). Then we have

\[
\int f d\delta_{x_i} = f(x_i) = r_i. \text{ If we set } \varphi : [0, 1]^n \rightarrow [0, 1] \text{ by } \varphi(u_1, u_2, \ldots, u_n) = \sqrt[n]{u_1 u_2 \cdots u_n}, \text{ then we have}
\]

\[
\varphi\left(\int f d\mu\right) = \sqrt[n]{r_1 r_2 \cdots r_n}.
\]

B. Evaluation taking account of the dual measure \(\mu_d \)

Let \(\mu_d \) be the dual measure of \(\mu, \mu_d(A) = 1 - \mu(A^c) \). Set \(\mu(A) = (\mu(A), \mu_d(A)) \). Then the value \(\varphi(\int f d\mu) \) reflects a contribution of \(\mu_d \).

The meaning of \((C) \int_X f d\mu_d \) is as follows. The score function \(f(x) \) can be considered as a degree of satisfaction, so \(1 - f(x) \) be a degree of dissatisfaction. Consequently, the Choquet integral \((C) \int_X (1 - f)d\mu_d \) is a total score of dissatisfaction. It is desirable to minimize \((C) \int_X (1 - f)d\mu_d \), equivalently, to maximize \(1 - (C) \int_X (1 - f)d\mu_d \) to reduce the dissatisfaction.

REFERENCES