Distortion of Fuzzy Measures

Aoi Honda, Takafumi Nakano and Yoshiaki Okazaki
Kyushu Institute of Technology

Dept. of Control Engineering and Science,
Fac. of Computer Science and Systems Engineering
Kyushu Institute of Technology, Kawaazu, Fukuoka 820-8502, JAPAN
email: aoi@ces.kyutech.ac.jp

Abstract—Let g and μ be fuzzy measures on the σ-algebra \mathcal{B}. g is said to be a distortion of μ if there is a non-decreasing function $f : [0, \infty] \to [0, \infty]$ satisfying that $g(E) = f(\mu(E))$, $E \in \mathcal{B}$. The general condition for the distortion between two fuzzy measures are discussed. The distortion can be characterized by the strong invariance. The fuzzy measure g is called strongly μ-invariant if $\mu(A) \leq \mu(B)$ implies that $g(A) \leq g(B)$ for every $A, B \in \mathcal{B}$. Then g is a distortion of μ if and only if g is in strongly μ-invariant. We give a characterization of the possibility measure a distortion of a σ-additive measure.

I. INTRODUCTION AND PRELIMINARIES

We shall discuss the distortion property between fuzzy measures. The class of distorted fuzzy measure was introduced and investigated by Chateauneuf[1], Schmeidler[4] and Yaari[6], see also Pap[3] and Wang and Khiir[5].

Let X be a set and \mathcal{B} be a σ-algebra of subsets of X, that is, \mathcal{B} satisfy the following conditions:
1) $\emptyset \in \mathcal{B}$,
2) if $E \in \mathcal{B}$, then $E^c \in \mathcal{B}$, and
3) if $E_n \in \mathcal{B} (n = 1, 2, \ldots)$, then $\bigcup_{n=1}^{\infty} E_n \in \mathcal{B}$.

Definition 1. The set function $g : \mathcal{B} \to [0, \infty]$ is called the fuzzy measure if the following conditions are satisfied:
1) $g(\emptyset) = 0$, and
2) for every $A, B \in \mathcal{B}$ with $A \subset B$, it follows that $g(A) \leq g(B)$ (the additivity).

Definition 2. The set function $\mu : \mathcal{B} \to [0, \infty]$ is called the σ-additive measure if the following conditions are satisfied:
1) $\mu(\emptyset) = 0$, and
2) for every pairwise disjoint family $E_n \in \mathcal{B} (n = 1, 2, \ldots)$, it follows that $\mu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} E_n$ (the additivity).

Definition 3. The function $f : [0, \infty] \to [0, \infty]$ is called the scaling function (or the distortion function) if the following conditions are satisfied:
1) $f(0) = 0$, $f(\infty) = \infty$, and
2) f is non-decreasing.

Let f be a distortion function and $h : \mathcal{B} \to [0, \infty]$ be a fuzzy measure. Then the set function $g(A) = f(h(A))$, $A \in \mathcal{B}$, is also a fuzzy measure. We denote this fuzzy measure g by $g = f \circ h$.

Definition 4. Let g and h be two fuzzy measures on the σ-algebra \mathcal{B}. Then g is said to be a distortion of h if there exists a distortion function f satisfying that $g = f \circ h$.

Definition 5. Let g and h be two fuzzy measures on the σ-algebra \mathcal{B}. Then g is said to be h-invariant if $h(A) = h(B), A, B \in \mathcal{B}$, implies that $g(A) = g(B)$.

Definition 6. Let g and h be two fuzzy measures on the σ-algebra \mathcal{B}. Then g is said to be strongly h-invariant if $h(A) \leq h(B), A, B \in \mathcal{B}$, implies that $g(A) \leq g(B)$.

Definition 7. The set function $\Pi : \mathcal{B} \to [0, 1]$ is called the possibility measure if it holds that $\Pi(A) + \Pi(B) = \Pi(A) \cap \Pi(B) = \max\{\Pi(A), \Pi(B)\}$ for every $A, B \in \mathcal{B}$.

Definition 8. The fuzzy measure g is continuous from below if for every increasing sequence $A_n \uparrow A, A_n \in \mathcal{B}$, it follows that $g(A_n) \uparrow g(A)$.

Definition 9. The fuzzy measure g is said to be completely additive if for every directed family $\mathcal{A} = \{A_n \mid n \in I\} \subset \mathcal{B}$ increasing to A (that is, for each $A_n, A_\beta \in \mathcal{A}$, there exists $A_\alpha \in \mathcal{A}$ such that $A_n \cup A_\beta \subset A_\alpha$, and $\bigcup_{n \in I} A_n = A$), it follows that $g(A_n) \uparrow g(A)$.

II. INVARIANCE AND DISTORTION

It is clear that if $g = f \circ h$ for a distortion function f, then g is strongly h-invariant, and also h-invariant. We shall consider the converse.

Theorem 1 (Honda and Okazaki[2]). Let g and h be two fuzzy measures on the σ-algebra \mathcal{B}. Then g is a distortion of h if and only if g is strongly h-invariant.

Proof. The necessity is clear. We show the converse. We set the ranges $R(g), R(h)$ of g, h, respectively, by $R(g) = \{g(A) : A \in \mathcal{B}\}$ and $R(h) = \{h(A) : A \in \mathcal{B}\}$. We define the distortion function $f : R(h) \to R(g)$ by

$$f(h(A)) = g(A) \quad \text{for} \quad A \in \mathcal{B}.$$

Then by the h-invariance, f is well-defined on $R(h)$. Since g is strongly h-invariant, f is non-decreasing on $R(h)$. We can extend f on $[0, \infty]$ by

$$f(t) = \inf\{f(h(A)) : t \leq h(A) \in R(h)\}.$$
This completes the proof.

Definition 10. The fuzzy measure \(h \) is said to have the Darboux Property if for every \(s, t \in \mathcal{H}(h) \) with \(s \leq t \), there exist \(A, B \in \mathcal{B} \) with \(A \subseteq B \) such that \(t = h(A) \) and \(s = h(B) \), where \(\mathcal{H}(h) \) is the range of \(h \) (see the Proof of Theorem 1).

Theorem 2 (Honda and Okazaki [2]). Let \(g \) and \(h \) be two fuzzy measures on the \(\sigma \)-algebra \(\mathcal{B} \). Suppose that \(h \) has the Darboux Property and that \(g \) is \(h \)-invariant. Then \(g \) is a distortion of \(h \).

Proof. As in the Proof of Theorem 1, we set \(f : h \to f(g) \) by

\[
 f(h(A)) = g(A) \quad \text{for } A \in \mathcal{B}.
\]

Then \(f \) is well-defined by the \(h \)-invariance. Furthermore \(f \) is non-decreasing on \(h(A) \) by the Darboux property. In fact, for every \(s, t \in \mathcal{H}(h) \) with \(s \leq t \), there exist \(A, B \in \mathcal{B} \) with \(A \subseteq B \) such that \(t = h(A) \) and \(s = h(B) \). So we have \(f(s) = f(h(A)) = g(A) \leq g(B) = f(h(B)) = f(t) \), by the monotonicity of \(g \). Similarly to the Proof of Theorem 1, we can extend \(f \) on \([0, \infty)\). This proves the Theorem.

III. Possibility measure

Let \(\mathcal{B} \) be a \(\sigma \)-algebra on the set \(X \) and let \(\mu \) be a \(\sigma \)-additive measure on \(\mathcal{B} \). \(\mu \) is called a probability in the case where \(\mu(X) = 1 \). \(\mu \) is called a \(\sigma \)-finite measure if there exists a sequence \(\{A_n\} \subseteq \mathcal{B} \) with \(\mu(A_n) < \infty \) such that \(X = \bigcup_{n=1}^{\infty} A_n \). In the sequel of this section, we assume that \(\mu \) is a probability measure.

Let \(\Pi : \mathcal{B} \to [0, 1] \) be a possibility measure. We set the subset \(N, P, M \) and \(M \) as follows:

\[
N = \{x \in X : \Pi(x) = 0\},
\]
\[
P = \{x \in X : 0 < \Pi(x) < 1\} \quad \text{and}
\]
\[
M = \{x \in X : \Pi(x) = 1\}.
\]

If \(\Pi \) is a distortion of a \(\sigma \)-additive measure \(\mu \), then the distortion function \(f \) satisfies \(f(0) = 0 \) and that \(f(\mu(X)) = \Pi(X) = 1 \).

Lemma 1. Suppose that the possibility measure \(\Pi \) is a distortion of a \(\sigma \)-finite \(\sigma \)-additive measure \(\mu \) with the distortion function \(f \). Then the set \(P \cup M \) is at most countable.

Proof. For every \(x \in P \cup M \), it holds that \(0 < \Pi(x) = f(\mu(x)) \leq 1 \). It follows that \(0 < \mu(x) \leq \mu(X) \). Since \(\mu \) is \(\sigma \)-finite, \(\mu(x) < \infty \). So we have \(0 < \mu(x) < \infty \) for every \(x \in P \cup M \). Since \(\mu \) is \(\sigma \)-finite, each disjoint family of subsets of positive measures in \(\mathcal{B} \) is at most countable, and so is \(P \cup M \). This proves the Lemma.

Lemma 2. Suppose that the possibility measure \(\Pi \) is completely additive and is a distortion of a \(\sigma \)-additive measure \(\mu \) with the distortion function \(f \). Then the set \(P \) is at most countable.

Proof. Since \(\Pi \) is completely additive, it follows that \(\Pi(A) = \sup \{\Pi(x) : x \in A\} \). We set for \(0 < c < 1 \), \(P = \{x \in X : 0 < \Pi(x) \leq 1 - c\} \). Then by the complete additivity we have \(\Pi(P) \leq 1 - c \), and hence \(f(\mu(P)) \leq 1 - c \), which implies that \(\mu(P) < \infty \). Consequently, \(P \) is a countable set and \(P = \bigcup_{n=1}^{\infty} A_n \) is at most countable. This proves the Lemma 2.

Lemma 3. Suppose that the possibility measure \(\Pi \) is a distortion of a probability measure \(\mu \) with the distortion function \(f \). Then it holds that either the set \(M \) is finite or \(P = \emptyset \). In the case where \(P = \emptyset \), \(\Pi \) is a \(0-1 \) fuzzy measure.

Proof. Suppose that \(M \) is not a finite set. Then there exists a sequence \(\{x_n\} \subseteq M \). Since \(1 = \Pi(\{x_n\}) = f(\mu(\{x_n\})) \), we have \(\mu(\{x_n\}) > 0 \). Since \(\mu \) is a probability measure, it follows that \(\mu(\{x_n\}) \) converges to \(0 \) as \(n \to \infty \). So we have \(1 = \lim_{n \to \infty} f(\mu(\{x_n\})) = f(0_+), \) where \(f(0_+) \) is the right limit of \(f(x) \) at \(x = 0 \) (the right limit exists since \(f \) is non-decreasing). Consequently, it follows that \(f(0) = 0 \) and \(f(x) = 1 \) for \(0 < x \leq 1 \), which implies the assertion. This proves the Lemma 3.

Definition 11. Let \(Z = \{x_n : n = 1, 2, \ldots\} \) be a countable set and let \(f : Z \to [0, 1] \) be a function on \(Z \). We say that \(Z \) is \(f \)-rearrangeable downwards if there exists an arrangement \(Z = \{z_n : n = 1, 2, \ldots\} \) such that

\[
f(z_1) \geq f(z_2) \geq f(z_3) \geq \ldots
\]

Definition 12. Let \(Z = \{x_n : n = 1, 2, \ldots\} \) be a countable set and let \(f : Z \to [0, 1] \) be a function on \(Z \). We say that \(Z \) is \(f \)-rearrangeable upwards if there exists an arrangement \(Z = \{v_n : n = 1, 2, \ldots\} \) such that

\[
f(v_1) \leq f(v_2) \leq f(v_3) \leq \ldots
\]

Definition 13. Let \(Z = \{x_n : n = 1, 2, \ldots\} \) be a countable set and let \(f : Z \to [0, 1] \) be a function on \(Z \). We say that \(Z \) is \(f \)-rearrangeable downwards if there exists an arrangement \(Z = \{w_{\infty-3}, w_{\infty-2}, w_{\infty-1}, w_0, w_1, w_2, w_3, \ldots\} \) such that

\[
..., f(w_{\infty-2}) \leq f(w_{\infty-1}) \leq f(w_0) \leq f(w_1) \leq f(w_2) \leq f(w_3) \leq \ldots
\]

Let \(\Pi : \mathcal{B} \to [0, 1] \) be a possibility measure. We set

\[
\pi(x) = \Pi(\{x\}) \quad \text{for every } x \in X.
\]

This function \(\pi(x) : X \to [0, 1] \) is called the possibility distribution function of \(\Pi \).

Theorem 3-A. If the possibility measure \(\Pi \) is a distortion of a probability measure, then the set \(P \cup M \) is countable and \(P \cup M \) is \(\pi(x) \)-rearrangeable downwards.

Proof. Suppose that \(\Pi \) is a distortion of a probability measure \(\mu \) with the distortion function \(f \), that is, \(\Pi(A) = f \circ \mu(A) \) for every \(A \in \mathcal{B} \). Then by Lemma 1, the set \(P \cup M \) is countable. If the set \(P \cup M \) is finite, then \(P \cup M \) is \(\pi(x) \)-rearrangeable downwards. So we consider the case where \(P \cup M \) is infinite. If \(P = \emptyset \) then \(P \cup M = M \) is \(\pi(x) \)-rearrangeable downwards by the any arrangement of \(M \). If \(P \neq \emptyset \), then the set \(M \) is finite (Lemma 3) and hence \(P \) is infinite and is countable.

We claim that for every \(r \) with \(1 \geq r > f(0_+) \), the set \(Q_r = \{x \in P \cup M : \pi(x) \geq r\} \) is a finite set. In
fact, if there exists an infinite sequence \(\{x_n\} \subseteq Q_x \), it follows that \(\pi(x_n) \geq r > f(0)_+ \). On the other hand, similarly to the proof of Lemma 3, we have \(\mu(\{x_n\}) \to 0 \) and \(\pi(x_n) = f(\mu(\{x_n\})) \to f(0)_+ \), which is a contradiction.

By the above claim, it follows that the set \(\{x \in P \cup M : \pi(x) > f(0)_+\} \) is \(\pi(x) \)-rearrangeable downwards. In particular, if \(\pi(x) > f(0)_+ \) for every \(x \in P \cup M \), then the set \(P \cup M = \{x \in P \cup M : \pi(x) > f(0)_+\} \) is \(\pi(x) \)-rearrangeable downwards.

We shall investigate the last case where there is an \(x \in P \cup M \) such that \(\pi(x) = f(0)_+ \)(remark that \(\pi(x) \geq f(0)_+ \) for every \(x \in P \cup M \), since \(\mu(\{x\}) > 0 \) for every \(x \in P \cup M \). In this case, it holds that the set \(\{x \in P \cup M : \pi(x) > f(0)_+\} \) is finite. To see this, suppose that the set \(\{x \in P \cup M : \pi(x) > f(0)_+\} \) is infinite. Then we can take an infinite sequence \(\{x_n : n \in 1, 2, \ldots\} \subseteq P \cup M \) with \(\pi(x_n) > f(0)_+ \). Since \(\pi(x_n) = f(\mu(\{x_n\})) > f(0)_+ = \pi(x) = f(\mu(\{x\})) \) and \(f \) is non-decreasing, it follows that \(\mu(\{x_n\}) > \mu(\{x\}) > 0 \). Hence we have \(\pi(\{x_n : n \in 1, 2, \ldots\}) = \infty \), which contradicts to \(\mu(\{x\}) = 1 \). This completes the proof.

If \(P \) is completely additive, then the converse is also valid in Theorem 3-A as follows.

Theorem 3-A. Suppose that \(P \) is completely additive. If the set \(P \cup M \) is countable and \(P \cup M \) is \(\pi(x) \)-rearrangeable downwards, then the possibility measure \(II \) is a distortion of a probability measure.

Proof. Let \(P \cup M = \{u_n : n \in 1, 2, \ldots\} \) be a rearrangement such that \(\pi(u_n) \geq \pi(u_{n+1}) > 0 \) for every \(n \). By the complete additivity, if \(II(A) > 0 \), it holds that \(II(A) = II(A \cap (P \cup M)) \). For \(A, B \subseteq P \cup M \) with \(II(A) < II(B) \), we have \(\{n : u_n \in B\} < \{n : u_n \in A\} \) since \(\pi(u_n) = \pi(u_{n+1}) > 0 \). We set the probability \(\mu \) as follows \(\mu(\{u_n\}) = 2/3^n \) and \(\mu(A) = 0 \) for every \(A \subseteq \mathbb{N} \). If \(II(A) > 0 \) then \(\mu(A) = 0 \). We have the probability \(\mu \) is \(\mu \)-invariant. By Theorem 1, II is a distortion of \(\mu \). This completes the proof.

Theorem 4-A. If the possibility measure II is a distortion of a \(\sigma \)-finite \(\sigma \)-additive measure, then the set \(P \cup M \) is countable and \(P \cup M \) is \(\pi(x) \)-rearrangeable.

Proof. Suppose that II is a distortion of a \(\sigma \)-finite \(\sigma \)-additive measure \(\pi \) with the distortion function \(f \), that is, \(II(A) = f \circ \pi(A) \) for every \(A \subseteq \mathbb{B} \). By Lemma 1, the set \(P \cup M \) is countable.

If the set \(P \) is finite, then \(P \cup M \) is clearly \(\pi(x) \)-rearrangeable downwards. So in the sequel, we shall suppose that the set \(P \) is infinite and is countable.

Claim 1: For every infinite sequence \(\{z_n\} \subseteq P \), the real sequence \(\{\pi(z_n)\} \) has an accumulation point which is either \(f(0)_+ \) or \(f(\infty) = \lim_{n \to \infty} f(n) \).

Take an arbitrary infinite sequence \(\{z_n\} \subseteq P \). Let \(\alpha = \inf \{\pi(z_n) : n = 1, 2, \ldots\} \). Then if \(\alpha \) equals 0, there exists a subsequence \(z_{n_k} \) such that \(\pi(z_{n_k}) \to 0 \). So we obtain \(\pi(z_{n_k}) = f(\mu(\{z_{n_k}\})) \to f(0)_+ \) since \(f \) is non-decreasing. In the case where \(\alpha \to 0 \), it holds that \(\pi(z_{n_k}) \geq \alpha > 0 \) for every \(n \), which implies that \(\pi(z_{n_k}) = f(\mu(\{z_{n_k}\})) \to f(0)_+ \) as \(n \to \infty \). It follows that \(II(\{z_{n_k}, z_{n_k}, \ldots\}) = \max \{\pi(z_1), \pi(z_2), \ldots, \pi(z_{n_k})\} = f(\mu(\{z_{n_k}, z_{n_k}, \ldots\})) \) \(f(\infty) \). In particular, for every \(\delta > 0 \), there exists \(z_k \) such that \(\pi(z_k) > f(\infty) - \delta \). In fact, if \(\pi(z_k) \leq f(\infty) - \delta \), then \(\max \{\pi(z_1), \pi(z_2), \ldots, \pi(z_{n_k})\} \leq f(\infty) - \delta \) for every \(n \), which is a contradiction. Thus in this case, \(f(\infty) \) is the accumulation point of \(\{z_n\} \). This proves the Claim 1.

Claim 2: For every \(\alpha \) and \(\beta \) satisfying \(f(0)_+ < \alpha < \beta < f(\infty) \), the set \(Q_{\alpha, \beta} = \{x \in P \cup M : \alpha < \pi(x) < \beta\} \) is infinite.

If \(Q_{\alpha, \beta} \) is infinite, then by the Claim 1, the real numbers \(\pi(x) : x \in Q_{\alpha, \beta} \) has an accumulation point which is either \(f(0)_+ \) or \(f(\infty) \). This contradicts to \(f(0)_+ < \alpha < \beta < f(\infty) \).

Claim 3: For every \(x \in P \cup M \), it holds that \(f(0)_+ \leq \pi(x) \leq f(\infty) \).

Since \(\pi(x) = f(\mu(\{x\})) \), \(\mu(\{x\}) < \infty \) and \(\pi(x) > 0 \) for \(x \in P \cap M \), it follows that \(f(\mu(\{x\})) \leq f(\infty) \), \(\pi(x) = f(\mu(\{x\})) \geq f(0)_+ \), since \(f \) is non-decreasing.

Now we derive the proof as follows.

(1) The case where \(\{x \in P \cup M : f(0)_+ < \pi(x) < f(\infty)\} = \emptyset \).

In this case, we have \(P \cup M = \{x \in P \cup M : \pi(x) = f(0)_+\} \cap \{x \in P \cup M : \pi(x) = f(\infty)\} \), which is clearly \(\pi(x) \)-rearrangeable.

(2) The case where \(f(0)_+ < \pi(x) < f(\infty) \) for some \(x \in P \cup M \).

By Claim 1, the set \(\{x \in P \cup M : \pi(x) = f(0)_+\} \) is finite. We shall show that the set \(\{x \in P \cup M : f(0)_+ \leq \pi(x) < f(\infty)\} \) is \(\pi(x) \)-rearrangeable downwards (6) and (7) below), and the set \(\{x \in P \cup M : \pi(x) < f(\infty)\} \) is \(\pi(x) \)-rearrangeable upwards (6) and (7) below).

(3) If the set \(\{x \in P \cup M : f(0)_+ \leq \pi(x) < f(\infty)\} \) is finite, then \(\{x \in P \cup M : f(0)_+ \leq \pi(x) < f(\infty)\} \) is clearly \(\pi(x) \)-rearrangeable downwards.

(4) If the set \(\{x \in P \cup M : f(0)_+ < \pi(x) < f(\infty)\} \) is infinite and if \(f(0)_+ = 0 \), then by Claim 2, \(\{x \in P \cup M : f(0)_+ < \pi(x) < f(\infty)\} \) is clearly \(\pi(x) \)-rearrangeable downwards.

(5) If the set \(\{x \in P \cup M : f(0)_+ < \pi(x) < f(\infty)\} \) is infinite and if \(f(0)_+ > 0 \), then the set \(\{x \in P \cup M : \pi(x) = f(0)_+\} \) is empty. In fact, take an infinite sequence \(x_n \in \{x \in P \cup M : f(0)_+ < \pi(x) < f(\infty)\} \). Then by Claim 1, \(\pi(x_n) \to f(0)_+ \). Suppose that there exists \(w \in \pi(w) = f(0)_+ > 0 \). By \(f(\mu(\{x_n\})) = \).
\(\pi(x_i) > f(0_+) = f(\mu(\{x\}))\), it follows that \(\mu(\{x_n\}) > \mu(\{x\}) > 0\). Similarly Claim 2, we have \(\mu(\{x_1, \ldots, x_n\}) \to \infty\) and max \(\{\pi(x_i) : i = 1, 2, \ldots, n\} = \Pi(\{x_1, \ldots, x_n\}) = f(\mu(\{x_1, \ldots, x_n\})) \to f(\infty_+),\) which contradicts to \(\pi(x) < \pi(\infty)\). Consequently, \(\{x \in P \cup M : f(0_+) \leq \pi(x) < \pi(\infty)\} \) is clearly \(\pi(x)\)-rearrangeable downwards.

(6) If the set \(\{x \in P \cup M : \pi(x) < \pi(x) < f(\infty)\}\) is finite, then the set \(\{x \in P \cup M : \pi(x) < \pi(x) \leq f(\infty)\}\) is clearly \(\pi(x)\)-rearrangeable upwards.

(7) Let the set \(\{x \in P \cup M : \pi(x) < \pi(x) < f(\infty)\}\) be infinite. In this case, we shall show that the set \(\{x \in P \cup M : \pi(x) = f(\infty)\}\) is empty. On the contrary, suppose that there exists \(w \in \{x \in P \cup M : \pi(x) = f(\infty)\}\). Take any infinite sequence \(x_n \in \{x \in P \cup M : \pi(x) < \pi(x) < f(\infty)\}\). Then we have \(f(0_+) < \pi(x) < \pi(x) = f(\infty),\) which implies that \(0 < \mu(\{x\}) \leq \mu(\{x\}) \leq f(\infty)\), since \(f\) is non-decreasing. By the inequality \(f(\mu(\{x_1, x_2, \ldots, x_n\})) = \Pi(\{x_1, x_2, \ldots, x_n\}) = \max \{\pi(x_i) : i = 1, 2, \ldots, n\}\), the function \(\mu(\{x, x_1, x_2, \ldots, x_n\}) \leq \mu(\{w\})\). Since \(\mu(\{x_1, x_2, \ldots, x_n\}) = \sum_{i=1}^{n} \mu(\{x_i\}) \geq \mu(\{x\}),\) it follows that \(\mu(\{w\}) = \infty,\) which is a contradiction since \(\pi\) is \(\pi(x)\)-finite. This proves the assertion.

Theorem 4-B. Suppose that \(\Pi\) is completely additive. If the set \(P \cup M\) is countable and if \(P \cup M\) is \(\pi(x)\)-rearrangeable, then the possibility measure \(\Pi\) is a distortion of a \(\pi(x)\)-finite \(\pi(x)\)-additive measure.

Proof. Let \(P \cup M = \{x_1, x_2, \ldots, y_1, \ldots, y_n, \ldots\}\) be an arrangement such that \(\ldots \leq \pi(y_{m-1}) \leq \pi(y_m) \leq \pi(y_{m+1}) \leq \ldots \leq \pi(y_0) \leq \pi(y_{n+1}) \leq \ldots\). We set the \(\pi(x)\)-finite measure \(\mu\) as follows: \(\mu(\{x_i\}) = 2^{|\pi(x)|}^i (i = 1, 2, \ldots)\). We set the \(\Pi(\{x_i\}) = \mu(\{x\})\). If \(A = \{x : n = 1, 2, \ldots\}\), then it holds that \(\mu(A) = \sum \mu(x_n) = \infty,\) and \(\Pi(\{A\}) = f(\mu(A)) = 1\). By the complete additivity of \(\Pi,\) it follows that \(\Pi(\{A\}) = \sup \{\pi(x) : n = 1, 2, \ldots\} \leq \gamma,\) which is a contradiction. Hence \(\Pi\) is finite. We put \(U = \{x : f(0_+) \leq \pi(x) < \pi(\infty)\}\). Then similarly to (1) above, \(U\) is \(\pi(x)\)-rearrangeable downwards. By Claim 5, the set \(\{x \in P : \pi(x) = \pi(\infty)\}\) is finite. So the set \(P = U \cup \{x \in P : \pi(x) = \pi(\infty)\}\) is \(\pi(x)\)-rearrangeable.

Theorem 5-B. Suppose that \(\Pi\) is completely additive. If one of the following conditions 1. or 2. is valid, then \(\Pi\) is a distortion of a \(\pi(x)\)-additive measure.

1. \(\sup \{\pi(x) : x \in P\} = 1\) and \(P\) is \(\pi(x)\)-rearrangeable, or
2. \(\sup \{\pi(x) : x \in P\} < 1\) and \(P\) is \(\pi(x)\)-rearrangeable downwards.

Proof. (1) Let \(P = \{x_m, \ldots, x_n, \ldots\}\) be an arrangement such that \(\ldots \leq \pi(y_{m-1}) \leq \pi(y_m) \leq \pi(y_{m+1}) \leq \ldots \leq \pi(y_0) \leq \pi(y_{n+1}) \leq \ldots\). We set the \(\pi(x)\)-additive measure \(\mu\) as follows: \(1. \mu(\{y_m\}) = 2^{|\pi(y)|}^m, m = 1, 2, \ldots,\)

\(\mu(\{y_n\}) = 2^{|\pi(y)|}^{n+1}, n = 0, 1, 2, \ldots,\)

\(3. \mu(y) = 0\) for \(y \in N,\)

\(4. \mu(y) = \infty\) for \(y \in M.\)

Then similarly to Theorem 3-B, \(\Pi\) is a distortion of \(\mu.\)

(2) Let \(P = \{x_m, \ldots, x_n, \ldots\}\) be an arrangement such that \(\ldots \leq \pi(y_{m-1}) \leq \pi(y_m) \leq \pi(y_{m+1}) \leq \ldots \leq \pi(y_0) \leq \pi(y_{n+1}) \leq \ldots\)
\(\pi (y_0, y_1) \). We set the \(\sigma \)-additive measure \(\mu \) as above but only for \(n=0, 1, 2, \ldots, N \). Then II is a distortion of \(\mu \).

REFERENCES

