CHARACTERIZATION OF 0-1 POSSIBILITY MEASURE
ON TOPOLOGICAL SPACE

Aoi Honda and Yoshiaki Okazaki

1 Introduction

Let X be a set and let \mathcal{A} be a family of subsets of X satisfying that
1. \emptyset (the empty set) $\in \mathcal{A}$,
2. \mathcal{A} contains the one-point set $\{x\}$ for every $x \in X$, and
3. $X \in \mathcal{A}$.

Definition 1. The set function $g : \mathcal{A} \to [0, 1]$ is called a fuzzy measure if the following conditions are satisfied:
1. $g(\emptyset) = 0$, $g(X) = 1$, and
2. for every $A, B \in \mathcal{A}$ with $A \subseteq B$, it follows that $g(A) \leq g(B)$ (the monotonicity).

Definition 2. The set function $\Pi : \mathcal{A} \to [0, 1]$ is called the possibility measure if there exists a function $\pi : X \to [0, 1]$ satisfying that
1. $\sup_{x \in X} \pi(x) = 1$, and
2. $\Pi(A) = \sup_{x \in A} \pi(x)$ for every $A \in \mathcal{A}$.

Definition 3. The set function $N : \mathcal{A} \to [0, 1]$ is called the necessity measure if the dual measure N^d is a possibility measure, where the dual measure is given by $N^d(A) = 1 - \Pi(A)$ for $A \in \mathcal{A}$.

Definition 4. The fuzzy measure $g : \mathcal{A} \to [0, 1]$ is called increasingly continuous if for every increasing $A_n \uparrow A$ with $A_n, A \in \mathcal{A}$, it holds that $g(A_n) \uparrow g(A)$.

Definition 5. The fuzzy measure $g : \mathcal{A} \to [0, 1]$ is called decreasingly continuous if for every decreasing $A_n \downarrow A$ with $A_n, A \in \mathcal{A}$, it holds that $g(A_n) \downarrow g(A)$.

The possibility measure Π is increasingly continuous and the necessity measure N is decreasingly continuous.

Definition 6. The support S_g of the fuzzy measure g is defined by
$$S_g = \{x \in X \mid g(\{x\}) > 0\}.$$

Let $\Pi : \mathcal{A} \to [0, 1]$ be a 0-1 possibility measure, that is, $\Pi(A) = 0$ or 1 for every $A \in \mathcal{A}$. In this case, the support of Π is given by $S_\Pi = \{x \in X \mid \Pi(\{x\}) = \pi(x) = 1\}$. If $\Pi(A) = \sup_{x \in A} \pi(x) = 1$, then there exists a sequence $x_n \in A$ such that $\lim \pi(x_n) = 1$. Since $\pi(x_n) = \Pi(\{x\}) = 0$ or 1, it follows that $\pi(x) = \Pi(x) = 1$ for some x. This means that $\Pi(A) = 0$ if and only if $A \cap S_\Pi = \emptyset$.
Let $N : \mathcal{A} \to [0, 1]$ be a 0-1 necessity measure, that is, $N(A) = 0$ or 1 for every $A \in \mathcal{A}$. Then it follows that $N(A) = 1$ if and only if $N^d(A^c) = 0$.

Let X be a topological space with the topology \mathcal{C} (the family of all open subsets of X). Denote by \mathcal{B} the Borel σ-algebra on X, that is, \mathcal{B} is the minimal σ-algebra containing the family \mathcal{C} of all open subsets of X.

In Section 2, the closedness of the support of a possibility measure on \mathcal{B} is characterized by the continuity.

In Section 3, we introduce the regularity and smoothness for a 0-1 fuzzy measure and give a characterization of the 0-1 possibility measure on \mathcal{B}.

For the basic notions of the fuzzy measure and topological space, we refer to [1] and [2].

2 Closedness of the support of 0-1 possibility

In this section, we characterize the closedness of the support of the 0-1 possibility by the continuity.

Theorem 1. Let X be a metric space and \mathcal{B} be the Borel σ-algebra. Let Π be the possibility measure on \mathcal{B}. Then the support S_Π of Π is closed if and only if for every decreasing sequence $K_n \downarrow K$ of compact subsets, $\lim \Pi(K_n) = \Pi(K)$.

Proof. Suppose that the support S_Π is closed. Let $K_n \downarrow K$ be a decreasing sequence of compact subsets. If $\Pi(K_n) = 1$ for every n, then $K_n \cap S_\Pi \neq \emptyset$. Since $K_n \cap S_\Pi$ is a decreasing sequence of compact subsets, by the Cantor’s intersection theorem, $K \cap S_\Pi$ is not empty. So we have $\Pi(K) = 1$.

Conversely, suppose that for every decreasing sequence $K_n \downarrow K$ of compact subsets, it holds that $\lim \Pi(K_n) = \Pi(K)$. We show the closedness of S_Π. For every x in the closure of S_Π, we can find $x_n \in S_\Pi$ such that $x_n \to x$ in X. We set $K_n = \{x_i | i \geq n\} \cup \{x\}$. Then K_n is a converging sequence including the limit point, hence K_n is compact and $K_n \downarrow \{x\}$. Since $\Pi(K_n) = 1$, it follows that $\lim \Pi(K_n) = \Pi(\{x\}) = 1$, which shows $x \in S_\Pi$. Thus S_Π is closed.

Definition 7. Let X be a topological space and U be an open subset of X. We say that U is a co-compact set if the complement U^c is a compact subset.

Let $N : \mathcal{B} \to [0, 1]$ be a 0-1 necessity measure on the Borel σ-algebra \mathcal{B}. Then the dual measure N^d is a 0-1 possibility measure. Denote by S_{N^d} the support of N^d. Then, $N(A) = 1$ if and only if $N^d(A^c) = 0$, that is, $A^c \cap S_{N^d} = \emptyset$. Consequently, $N(A) = 1$ if and only if $A \supseteq S_{N^d}$.

Theorem 2. Let X be a metric space and \mathcal{B} be the Borel σ-algebra. Let N be the necessity measure on \mathcal{B}. Then the support S_{N^d} of the dual measure N^d is closed if and only if for every increasing sequence $U_n \uparrow U$ of co-compact subsets, $\lim N(U_n) = N(U)$.
Characterization of 0-1 Possibility Measure on Topological Space

Proof. By Theorem 1, \(S_{N^c} \) is closed if and only if for every decreasing sequence \(K_n \downarrow K \) of compact subsets, \(\lim N(K_n) = N(K^c) \), that is \(\lim N(K_n^c) = N(K^c) \). If we set \(U_n = K_n^c \) and \(U = K^c \), then each \(U_n \) is co-compact and \(U_n \uparrow U \). This proves the Theorem 2.

3 Characterization of 0-1 possibility measure

Definition 8. Let \(X \) be a topological space and \(\mathcal{B} \) be the Borel \(\sigma \)-algebra on \(X \). A fuzzy measure \(g : \mathcal{B} \rightarrow [0, 1] \) is called increasingly smooth if for every family \(\{O_i\} \) of open subsets with \(g(O_i) = 0 \), it holds that \(G(\bigcup_i O_i) = 0 \). \(g \) is called decreasingly smooth if for every family \(\{F_i\} \) of closed subsets with \(g(F_i) = 1 \), it holds that \(g(\bigcap_i F_i) = 1 \). We say \(g \) is smooth if \(g \) is increasingly smooth and decreasingly smooth.

The possibility measure on the Borel \(\sigma \)-algebra is increasingly smooth and the necessity measure is decreasingly smooth. We show the converse for 0-1 fuzzy measure.

Theorem 3. Let \(X \) be a topological space and \(\mathcal{B} \) be the Borel \(\sigma \)-algebra on \(X \). Let \(g \) be a 0-1 fuzzy measure on \(\mathcal{B} \). Suppose that \(g \) is outer regular, that is, for every \(A \in \mathcal{B} \) with \(g(A) = 0 \) there exists an open subset \(O \) with \(A \subset O \) such that \(g(O) = 0 \). If \(g \) is increasingly smooth, then \(g \) is a possibility measure.

Proof. Let \(S_g \) be the support of \(g \). Then for every \(x \in S_g^c, g(\{x\}) = 0 \), by the outer regularity, there exists an open subset \(O \) with \(x \in O \) such that \(g(O) = 0 \). Consequently, the set \(\{x \in X \mid g(\{x\}) = 0 \} = S_g^c \) is open, and hence the support \(S_g \) is closed. Furthermore, by the increasingly smoothness, we have \(g(S_g^c) = 0 \). So \(g(A) = 1 \) if and only if \(A \cap S_g \neq \emptyset \). This shows that \(g \) equals the possibility measure with the support \(S_g \).

Theorem 4. Let \(X \) be a topological space and \(\mathcal{B} \) be the Borel \(\sigma \)-algebra on \(X \). Let \(g \) be a 0-1 fuzzy measure on \(\mathcal{B} \). Suppose that \(g \) is inner regular, that is, for every \(B \in \mathcal{B} \) with \(g(B) = 1 \) there exists an closed subset \(F \) with \(B \supseteq F \) such that \(g(F) = 1 \). If \(g \) is decreasingly smooth, then \(g \) is a necessity measure.

Proof. Let \(g^d \) be the dual measure of \(g \). Then it is clear that \(g^d \) is outer regular and increasingly smooth by the definition of the dual measure. So by Theorem 3, \(g^d \) is a possibility measure and \(g \) is a necessity measure.

References

Department of Control Engineering and Science
Kyushu Institute of Technology
Kawazu, Fukuoka 820-8502, JAPAN