A GENERALIZATION OF HANNER'S INEQUALITY

Aoi KIGAMI, Yoshiaki OKAZAKI and Yasuji TAKAHASHI

(Received November 27, 1995)

1. Introduction

In the preceding paper [2], we extended the Hanner's 2-element inequality in L^p to the n-element inequality and determined the type 2 (cotype 2) constant of L^p. However the main result in [2] was restricted to the real valued functions in L^p and the general complex case was left open. In this paper, we prove that the n-element version of the Hanner's inequality is also valid for the complex valued L^p-functions. Let $\epsilon_1, \epsilon_2, \cdots, \epsilon_n$ be the independent Rademacher sequence and $x_1, x_2, \cdots, x_n \in L^p$. We prove that

\[E \left| \sum_{i=1}^n \epsilon_i x_i \right|^p \geq E \left| \sum_{i=1}^n \epsilon_i \right|^{\frac{p}{2}} \left| x_i \right|^p \quad \text{for } 1 \leq p \leq 2, \text{ and} \]
\[E \left| \sum_{i=1}^n \epsilon_i x_i \right|^p \leq E \left| \sum_{i=1}^n \epsilon_i \right|^{\frac{p}{2}} \left| x_i \right|^p \quad \text{for } 2 \leq p < \infty. \]

We prove a heredity property of Hanner cotype $p (1 \leq p \leq 2)$. If X is a Banach space of Hanner cotype p, then $L^p(X)$ is of Hanner cotype p.

2. Hanner's inequality

Let $1 \leq p < \infty$, (S, Σ, μ) be a probability space and $L^p = L^p(S, \Sigma, \mu)$. The norm of L^p is given by $\|x\| = (\int |x(t)|^p d\mu(t))^{1/p}$. Hanner [1] proved the following inequalities. For $x_1, x_2 \in L^p$, it holds that for $1 < p \leq 2$

\[\|x_1 + x_2\|^p + \|x_1 - x_2\|^p \geq \|x_1\|^p + \|x_2\|^p + \|x_1 - x_2\|^p \]

and for $2 \leq p < \infty$

\[\|x_1 + x_2\|^p + \|x_1 - x_2\|^p \leq \|x_1\|^p + \|x_2\|^p + \|x_1 - x_2\|^p. \]

In the case where $p = 1$, the Hanner's inequality is just the triangular inequality. The case $p = 2$ is

\[\|x_1 + x_2\|^2 + \|x_1 - x_2\|^2 \geq \|x_1\|^2 + \|x_2\|^2 + \|x_1 - x_2\|^2 \]

the parallelogram law. The Hanner's inequality is rewritten as follows. Let ϵ_1, ϵ_2 be the independent Rademacher random variables with the distribution $\epsilon_i = \pm 1$ with probability $1/2$. Then the Hanner's inequality is given by

\[E \left| \sum_{i=1}^2 \epsilon_i x_i \right|^p \geq E \left| \sum_{i=1}^2 \epsilon_i \right|^{\frac{p}{2}} \left| x_i \right|^p \quad \text{for } 1 < p \leq 2, \text{ and} \]
\[E \left| \sum_{i=1}^2 \epsilon_i x_i \right|^p \leq E \left| \sum_{i=1}^2 \epsilon_i \right|^{\frac{p}{2}} \left| x_i \right|^p \quad \text{for } 2 \leq p < \infty. \]
where E means the expectation with respect to the Rademacher distribution.

In the preceding paper [2], we extended the Hanner's 2-element inequality to the n-element inequality as follows. Let $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ be the independent Rademacher sequence and $x_1, x_2, \cdots, x_n \in L^p$. Then if each x_i is real valued function, then it holds that

$$E \| \sum_{i=1}^n \varepsilon_i x_i \|^p \geq E \| \sum_{i=1}^n \varepsilon_i x_i \|^p \quad \text{for } 1 \leq p \leq 2, \text{ and}$$

$$E \| \sum_{i=1}^n \varepsilon_i x_i \|^p \leq E \| \sum_{i=1}^n \varepsilon_i x_i \|^p \quad \text{for } 2 \leq p < \infty.$$

The general complex valued cases were left open in [2]. In this paper, we show that the Hanner's n-element inequality is valid also for complex valued functions $x_1, x_2, \cdots, x_n \in L^p$. To show the general complex case, we use the full real version of the above Hanner's n-element inequality.

Lemma 1. Let g_1 and g_2 be the independent Gaussian random variables with mean 0 and variance 1 on a probability space (Ω, P). Let $\phi : \mathbb{C} \to L^p(\Omega, P; \mathbb{R})$ be, for $z = u + iv \in \mathbb{C}$,

$$\phi(z)(\omega) = c_p(\varepsilon g_1(\omega) + v g_2(\omega)),$$

where $L^p(\Omega, P; \mathbb{R})$ is the real valued L^p space and c_p be the constant $c_p = (\int |g_1(\omega)|^p dP(\omega))^{-1/p}$. Then it hold that

1. ϕ is real linear, that is, $\phi(sz_1 + tz_2) = s\phi(z_1) + t\phi(z_2)$ for $z_1, z_2 \in \mathbb{C}$ and $s, t \in \mathbb{R}$, and
2. ϕ is isometry, that is,

$$\| \phi(z)(\omega) \|_{L^p(\Omega)} = (\int |\phi(z)(\omega)|^p dP(\omega))^{1/p} = |z| = \sqrt{u^2 + v^2}.$$

Proof. 1. is clear. To show 2, we calculate the L^p-norm of $\phi(z)$.

$$\| \phi(z) \|^p = c_p^p \left(\int |\phi(\varepsilon g_1(\omega) + v g_2(\omega))|^p dP(\omega) \right)$$

$$= c_p^p \left(\int \frac{u}{\sqrt{u^2 + v^2}} g_1(\omega) + \frac{v}{\sqrt{u^2 + v^2}} g_2(\omega) \right)^p dP(\omega)$$

$$= (\sqrt{u^2 + v^2})^p,$$

where we have used the fact that the distributions of $sg_1 + tg_2$ ($s^2 + t^2 = 1, s, t \in \mathbb{R}$) and g_1 are identical, hence the last integral is $c_p^p \cdot P$. This proves the Lemma.

Lemma 2. Let p be $1 \leq p < \infty$, $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ be independent Rademacher random variables and z_1, z_2, \cdots, z_n be complex numbers. Then it holds that for $1 \leq p \leq 2$

$$E \left| \sum_{i=1}^n \varepsilon_i z_i \right|^p \geq E \left| \sum_{i=1}^n \varepsilon_i |z_i| \right|^p,$$

and for $2 \leq p < \infty$
A Generalization of Hanner’s Inequality

\[\mathbb{E} \left| \sum_{i=1}^{n} \epsilon_i z_i \right|^p \leq \mathbb{E} \left| \sum_{i=1}^{n} \epsilon_i |z_i|^p \right. \]

Proof. Let \(\varphi \) be the mapping given in Lemma 1. We prove only the case \(1 \leq p \leq 2 \). The case \(2 \leq p < \infty \) is analogous. We have

\[
\begin{align*}
\mathbb{E} \left| \sum_{i=1}^{n} \epsilon_i z_i \right|^p &= \mathbb{E} \left\| \varphi \left(\sum_{i=1}^{n} \epsilon_i z_i \right) \right\|^p \\
&= \mathbb{E} \left\| \sum_{i=1}^{n} \epsilon_i \varphi(z_i) \right\|^p \\
&\geq \mathbb{E} \left(\sum_{i=1}^{n} \epsilon_i \| \varphi(z_i) \| \right)^p \\
&= \mathbb{E} \left(\sum_{i=1}^{n} \epsilon_i |z_i|^p \right)^p,
\end{align*}
\]

where the above inequality is the Hanner’s inequality for the real \(L^p \)-functions \(\{ \varphi(z_i) \} \) (see [2]) and the last equality follows from Lemma 1.

Lemma 3 (Hanner [1]). Let \(x \geq 0 \) and \(u \geq 0 \). Let \(f(u) \) be

\[f(u) = |u^{1/p} + x|^p + |u^{1/p} - x|^p. \]

If \(1 \leq p \leq 2 \), then \(f(u) \) is a convex function, and if \(2 \leq p < \infty \), then \(f(u) \) is a concave function.

Lemma 4. Let \(u_1, u_2, \ldots, u_n \geq 0 \) and let \(F(u_1, u_2, \ldots, u_n) \) be

\[F(u_1, u_2, \ldots, u_n) = \mathbb{E} \left(\sum_{i=1}^{n} \epsilon_i u_i \right)^p. \]

Then regarding \(F \) as a function of each \(u_i \), \(F \) is convex for \(1 \leq p \leq 2 \) and \(F \) is concave for \(2 \leq p < \infty \).

Proof. The Lemma follows from Lemma 3. See also Kigami, Okazaki and Takahashi [2].

Theorem 1. Let \(n \) be a natural number, \(\epsilon_1, \epsilon_2, \ldots, \epsilon_n \) be independent Rademacher random variables and \(x_1, x_2, \ldots, x_n \) be functions in \(L^p \).

1. If \(1 \leq p \leq 2 \), then it holds that

\[\mathbb{E} \left(\sum_{i=1}^{n} \epsilon_i x_i \right)^p \geq \mathbb{E} \left(\sum_{i=1}^{n} \epsilon_i \| x_i \|^p \right). \]

2. If \(2 \leq p < \infty \), then it holds that

\[\mathbb{E} \left(\sum_{i=1}^{n} \epsilon_i x_i \right)^p \leq \mathbb{E} \left(\sum_{i=1}^{n} \epsilon_i \| x_i \|^p \right). \]

Proof. (1) Suppose that \(1 \leq p \leq 2 \). By Lemma 2, we have

\[
\begin{align*}
\mathbb{E} \left(\sum_{i=1}^{n} \epsilon_i x_i \right)^p &= \mathbb{E} \left(\sum_{i=1}^{n} \epsilon_i (\omega) x_i(t) \right)^p d\mu(t) \\
&= \int \mathbb{E} \left(\sum_{i=1}^{n} \epsilon_i (\omega) x_i(t) \right)^p d\mu(t) \\
&\geq \int \mathbb{E} \left(\sum_{i=1}^{n} \epsilon_i (\omega) |x_i(t)| \right)^p d\mu(t) \\
&= \mathbb{E} \left(\sum_{i=1}^{n} \epsilon_i |x_i|^p \right),
\end{align*}
\]

(2) If \(2 \leq p < \infty \), then it holds that

\[\mathbb{E} \left(\sum_{i=1}^{n} \epsilon_i x_i \right)^p \leq \mathbb{E} \left(\sum_{i=1}^{n} \epsilon_i \| x_i \|^p \right). \]
where $|x_i(t)| = |x_i(t)|$. So we can suppose that each x_i is a non-negative function, $x_i(t) \geq 0$. By Lemma 3 and by the Jensen’s inequality, we obtain that

$$F(x_1(t)^p, x_2(t)^p, \ldots, x_n(t)^p) d\mu(t) \geq F(\int \frac{x_1(t)^p d\mu(t)}{\int \frac{x_i(t)^p d\mu(t)}{\int x_i(t)^p d\mu(t)}}),$$

where F is the function given in Lemma 4. This proves (1).

(2) The case where $2 \leq p < \infty$ is obtained by the manner same to the case (1). In this case, F is concave and we obtain the converse inequality

$$F(x_1(t)^p, x_2(t)^p, \ldots, x_n(t)^p) d\mu(t) \leq F(\int x_1(t)^p d\mu(t), \int x_2(t)^p d\mu(t), \ldots, \int x_n(t)^p d\mu(t)).$$

by the Jensen’s inequality. This completes the proof.

Remark. In the case where $p = 1$, Hanner’s 2-element inequality

$$\|x_1 + x_2\| + \|x_1 - x_2\| \geq \|x_1\| + \|x_2\| + \|x_1\| - \|x_2\|$$

is nothing but the triangular inequality. So this 2-element inequality is valid in all Banach spaces. But the n-element inequality

$$E \|\sum_{i=1}^n \epsilon_i x_i\|^p \geq E \|\sum_{i=1}^n \epsilon_i \|x_i\||^p$$

is not necessarily valid in all Banach spaces. If this n-element inequality is valid for every n, then the Banach space is of cotype 2, see [2].

3. Hanner type and Hanner cotype

Let X be a Banach space. Denote by $L^p(X) = L^p(S, \Sigma; \mu; X)$ the Banach space of X-valued L^p-functions $f(t) : S \to X$ with norm

$$\|f\|_{L^p(X)} = \left(\int_S \|f(t)\|^p d\mu(t)\right)^{1/p}.$$

Let X be a Banach space with norm $\|\|$. We say that X is of Hanner cotype p (1 $\leq p \leq 2$) if it holds that

$$E \|\sum_{i=1}^n \epsilon_i x_i\|^p \geq E \|\sum_{i=1}^n \epsilon_i \|x_i\||^p$$

for every n and every $x_1, x_2, \ldots, x_n \in X$, where $\{\epsilon_i\}$ are independent Rademacher random variables. We say that X is of Hanner type p (2 $\leq p < \infty$) if it holds that

$$E \|\sum_{i=1}^n \epsilon_i x_i\|^p \leq E \|\sum_{i=1}^n \epsilon_i \|x_i\||^p$$

for every n and every $x_1, x_2, \ldots, x_n \in X$. By Theorem 1, L^p is of Hanner cotype p for $1 \leq p \leq 2$ and of Hanner type p for $2 \leq p < \infty$.
THEOREM 2. If X is a Banach space of Hanner cotype p (resp., Hanner type p), then $L^p(X)$ is of Hanner cotype p (resp., Hanner type p).

PROOF. For $f_1, f_2, \ldots, f_n \in L^p(X)$, we have

$$E \left\| \sum_{i=1}^n \varepsilon_i f_i \right\|_{L^p(X)} = E \left(\int \left\| \sum_{i=1}^n \varepsilon_i f_i(t) \right\|^p d\mu(t) \right)$$

$$= \int \left(E \left\| \sum_{i=1}^n \varepsilon_i f_i(t) \right\|^p \right) d\mu(t)$$

$$\geq \int \left(E \left\| \sum_{i=1}^n \varepsilon_i f_i(t) \right\| \right) d\mu(t)$$

$$= E \left(\int \left\| \sum_{i=1}^n \varepsilon_i f_i(t) \right\| d\mu(t) \right)$$

$$= E \left\| \sum_{i=1}^n \varepsilon_i f_i \right\|_{L^p([0,1])}$$

$$\geq E \left\| \sum_{i=1}^n \varepsilon_i \left\| f_i \right\|_{L^p} \right\|_{L^p([0,1])}$$

where the two inequalities above follow from the fact that X and $L^p(\mathbb{R})$ are of Hanner cotype p (the assumption on X and Theorem 1) and F_i is the real function $F_i(t) = \| f_i(t) \|$. This completes the proof.

PROPOSITION 1. Let $1 \leq p \leq r \leq 2$. Then L^r is of Hanner cotype p and $L^p(L^r)$ is of Hanner cotype p.

PROOF. L^r is isometrically imbeddable into L^p since $1 \leq p \leq r \leq 2$, so the assertion follows.

References

[1] O. Hanner, On the uniform convexity of L^p and ℓ^n, Arkiv för Mat. 3 (1956), 239–244.

Department of Control Engineering and Science
Kyushu Institute of Technology
Kawazu, Iizuka 820, Japan

Department of Control Engineering and Science
Kyushu Institute of Technology
Kawazu, Iizuka 820, Japan

and

Department of System Engineering
Okayama Prefectural University
Kuboki, Soja 719–11, Japan